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Abstract—This paper presents a general analytical method for rectangular cellular plates with
arbitrarily-positioned large voids, in which the bending and the transverse shear deformations along
with the frame deformation are considered. The frame deformation is defined as the flexural
deformation of frame composed of the top and bottom platelets and of partitions in the cellular
plate. The discontinuous variation of the bending and transverse shear stiffnesses due to the voids
is expressed continuously by the use of a specific function, defined to exist continuously in a
prescribed region. The bending stiffness is given by the actual bending stiffness at each point. The
transverse shear stiffness per void is given by an equivalent transverse shear stiffness, which is
calculated from the stiffness of a frame and partitions, like shear walls surrounding each void, and
depends on the shape of each void. The governing equations are formulated by means of Hamilton’s
principle. Neglecting the effect of voids, the proposed governing equations reduce to the Mindlin
theory. Static and dynamic solutions are obtained by the Galerkin method. The approximate
solution for dynamic plates is proposed. The numerical results obtained from the proposed theory
for simply-supported and clamped cellular plates show good agreement with results obtained from
the finite element method. The theory proposed here includes the Mindlin and Reissner theories,
and Takabatake’s theory [Takabatake, H. (1991). Static analyses of elastic plates with voids. Inz. J.
Solids Structures 28, 179-196} based on the Kirchhoff-Love hypothesis.

1. INTRODUCTION

Recently, cellular plates have been used as building slabs. The deformation is characterized
by the frame deformation, as shown in Fig. 1. This is the flexural deformation of a frame,
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Fig. 1. Frame deformation of cellular plate.
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composed of top and bottom platelets and of partitions surrounding a void. Most methods
for the analysis of cellular plates are based on an equivalent plate analogy. A number of
authors have proposed rigidity coefficients, for example, Crisfield and Twemlow (1971),
Cope et al. (1973), Holmberg (1960), Sawko and Cope (1969), and Elliott (1978). However,
the above equivalent approaches cannot apply to a plate with irregularly-spaced voids
and/or with voids of different cross-sections, because the stiffness depends on the size and
position of voids used.

On the other hand, although the finite element method is effective for a cellular
plate, it needs a computer of great capacity and is both costly and time-consuming for
computation. So, in the preliminary stage of design, the use of the finite element method is
not practical. Takabatake (1991a, 1991b) presented a general and simplified analytical
method for static and dynamic analysis of plates with arbitrarily-positioned voids. The
discontinuous variation of stiffness of such a plate was expressed as a continuous function
by means of a specific function based on Dirac function. Since this theory is based on the
validity of the Kirchhoff-Love hypothesis, it cannot apply to a cellular plate, because the
deformation is dominated by the frame deformation.

Reissner (1945) and Mindlin (1951) presented theories including the transverse shear
deformation for a rectangular solid plate, in which the bending rigidity and transverse
shear stiffness are constant. However, since a cellular plate with arbitrarily-positioned and
arbitrarily-opening voids is dominated by the frame deformation. the bending and trans-
verse shear stiffnesses vary discontinuously. So. it is desired, for practical use, to formulate
a general and simplified analytical method for such a cellular plate.

The purpose of this paper is to propose a general and simplified method for a rec-
tangular cellular plate with arbitrarily-positioned voids, in which bending and the transverse
shear deformation, along with the frame deformation, are considered. The discontinuous
variation of the bending and transverse shear stiffnesses is treated as a continuous function
by means of a specific function proposed by Takabatake (1988, 1991a, 1991b). This treat-
ment is independent of the previous equivalent plate analogy for rectangular plates.

First, the general governing equations for a rectangular cellular plate with the trans-
verse shear deformation along with the frame deformation are proposed by using Ham-
ilton’s principle. Second, the static solutions are presented by the use of the Galerkin
method. Third, the natural frequencies are presented by means of the Galerkin method ;
and an approximate expression for the natural frequency is proposed. Fourth, the forced
vibrations are presented by the use of the linear acceleration method. For practical use, the
approximate solutions are proposed for general external loads. The exactness of the theory
and approximate solutions proposed here are established from numerical results by com-
paring the results obtained from the proposed theory for simply-supported and clamped
cellular plates with the results obtained from FEM code NASTRAN.

2. GOVERNING EQUATIONS OF A CELLULAR PLATE WITH TRANSVERSE SHEAR
DEFORMATIONS ALONG WITH FRAME DEFORMATION

Consider a rectangular cellular plate with arbitrarily-positioned voids. A Cartesian
coordinate system x, y, z is employed. Assume that each void is a rectangular parallelepiped
whose ridgelines are parallel to the x- or y-axis and which is symmetrically positioned with
respect to the middle plane of the cellular plate, as shown in Fig. 2. The midpoint, widths,
and height of the i, jth void are indicated by (x,, ). b, b,.,. and h,;, respectively. The size
and position of each void are arbitrary except for the mentioned assumption.

This paper considers the bending of an isotropic cellular plate subject to small defor-
mations, including the transverse shear deformation along with the frame deformation.
The deformation of cellular plates is assumed to be adequately defined by describing the
geometry of its middle surface, which is a surface that bisects the plate thickness, #,, at
each point. Then, neglecting the effect of shear-lag and considering the in-plane mean
transverse deformation, the displacement components, U. V, and W on a general point of
the cellular plate are given as
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U(xayv Z, t) = 29,\‘(-\—5}'5 t) (1)
V(x,y,z,1) = 20, (x, », 1) 2
W(x,y,z, 1) = w(x, 1) (3)

in which w(x, y, ) = the lateral displacement on the middle surface; and 8, and 6, = the
rotational angles about y- and x-axes, respectively; and z = the distance measured from
the middle surface of the plate. These displacement and rotational angles are considered
positive when they point toward the positive direction of the z-coordinate axis and clockwise
with respect to the y- and x-coordinate axes, respectively.

The strain energy U for the current problem is given by

1
U = 5 J\\[[Mx Bx,x + Mv 0)‘.}' + Mxy(e\'.‘r + 0}’.1) + Q.\'(w'.x + 9\) + QJ.(M'.}. + 9\)] d-x dy (4)

in which M, M,, and M, = the bending and twisting moments per unit width, respectively ;
Q. and Q, = the transverse shear forces per unit width. The bending and twisting moments
are given by

M_v = DO d(xs V) (Hx.x + var,y) (5)

My = DO d(X, )') (Ql\ + vex,.\‘) (6)
1—v

My === Dyd(x,1)(0,,+6,.) )

in which D, = Ehg/[12(1 —v*)]. Here E = Young’s modulus; v = Poisson’s ratio. On the
other hand, the stiffness coefficient, d(x, y), is defined as

d(x,y) = l—o, ;D(x—x)D(y—y)) (8)

in which a,, is defined as
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and D(x—x;) and D(y—y)) are the specific functions proposed by Takabatake (1991a).
The function D(x—x;) is defined as a function where the Dirac function d(x —¢) exists
continuously in the x direction through the i, jth void, namely the region from x;,—b,, /2 to
x;+b,,;/2, in which £ can take values from x,—b,, /2 to x;+b,; /2. Similarly, the function
D(y—y)) is defined as a function where the Dirac function d(y—#) exists continuously in
the y direction through the i, jth void, in which # can take values from y,—b,, /2 to y,+b,, ;/2.
The use of the specific functions used here makes current formulation and calculation
simple.
Meanwhile, the transverse shear forces can be written as

O: = k.G ho(w+0,) (10)
Q,\' = KyGyhO (W,y + 9)1) (l 1)

The factors, k, and «,, have been included to account for the nonuniformity of the shear
strains over the cross section. The transverse shear stiffnesses, k.G, #, and k,G,h,, are
determined from both the frame deformation and the transverse shear deformation of the
plate elements, as shown in the following section. Hence, (4) becomes

| I—v
U= EJJ {Do d[(em)2 +2v6,.9,,+0,,)* + *2"(0” +6y,x)2]
+1,Gho(W . +0,) +x,G ko (W, +0,) } dxdy. (12)

Next, the variation of the potential of external lateral loads is

oV =— ij(x, y,Howdxdy+ jJ‘cMﬁw dxdy- J [m% 80, +m?, 66,15 dy

c

—\( [m*80, +m¥, 66.1% dx-—J [q%ow]s dy—J [g¥owlydx  (13)

in which p = lateral load ; g¥ m¥, and m} = external transverse force, external moment,
and external twisting moment, respectively, prescribed on the mechanical boundary edges
at x =0 and x = [,; g%, m}, and m};, are external transverse forces, external moment, and
external twisting moment, respectively, prescribed on the mechanical boundary edges at
y=0andy=1,.

The kinetic energy T may be written as

1 . .
T= EJ‘J{I,,(X,J/)[(OX)2 +(6,)* ] +moa, (x, y)(W)* } dx dy (14)

in which the dot indicates differentiation with respect to time; and the notations, o, #1,,
and /,, are defined as

k.,
@ = 1= D(x=x)D(y~) (13)
0

mqy = phy (16)
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in which p = the mass density of the plate.
Substituting (12)—(14) into the Hamilton’s principle, the differential equation of motion
can be obtained as

ow:  mooW—[K,Gho(w,+6)] . —[K,Ghe(w,+6,)],—p+cw=0 (18)

- 1—
59x : ngx + Ky tho (W,x + ex) - [DO d(gx,x + ve}"y)],x - —_z—v' [DDd(ox.y + 9)".\‘)],y = 0

(19)
) 1-
86,: LB, +x,Ghy(w,+0,)—[Dod(8,,+0,,)],— —z—v [Dod (0, +0,.)]. =0 (20)

together with the associated boundary conditions

w=w* or K.Gho(w.+0:)=gx e2))
0, =0% or DydO..++0,,) =m? 22)
0, =07 or —Dyd(6,,+6,) = m}, 23)
at x =0and /,; and
w=w* or K,Gh(w,+0,) =gy (24)
0, =0 or l;—vD(,d((?x_y-i-f)y,x) = m}, 2%
0, =0% or D,d(®,,+v0,,) =m! (26)

at y =0 and /,, in which w*, 6% and 0} = displacement components prescribed on the
geometrical boundary.

For solid plates without voids, «, and d become 1; and the governing equations
proposed here reduce to Washizu (1982) and Mindlin’s equations (1951) with the transverse
shear deformation excluding the frame deformation. Furthermore, neglecting the transverse
shear deformation, the governing equations proposed here reduce to the general equations
proposed by Takabatake (1991a) for a rectangular plate with relative small voids excluding
the transverse shear deformation.

3. TRANSVERSE SHEAR STIFFNESS OF CELLULAR PLATES

The bending and transverse shear stiffnesses of cellular plates decrease due to voids.
The former reduction is already considered by the stiffness coefficient 4 given in (8). On the
other hand, the latter reduction is determined from the frame deformation and the transverse
shear deformation of the top and bottom platelets and of partitions surrounding a void.
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Fig. 3. Cross-section of cellular plates.

Consider the transverse shear stiffness of a cellular plate, as shown in Fig. 3. Assuming
that the influence points of top and bottom platelets and of partitions surrounding a void
are situated on the midspan of each member, the transverse shear stiffness, k.G A, per unit
width in x direction of the cellular plate is obtained easily from eqn (72) in Takabatake et
al. (1993a, 1993b) by

K Gohy = " - ‘ 27)
b’\"‘i, i\ = + =2
VAT Y SR A 1 %,

12 F koGotho—hiy) | KeGohobrg

This equation is also obtained by adding the shear deformation of members, such as
platelets and partition, to the equation given by Smith ef al. (1984). In (27) the first term
of denominator in the right side indicates the frame deformation; the second and third
terms indicate the shear deformations of only the top and bottom platelets and of partitions
in current voided plate, respectively. The notations, /,,, 1.,, and I,, are defined as

1 h_hi,'3 h —hi .’3
K== | I

I, = (28b)

K, has been included to account for the nonuniformity of the shear strains over the members.

If the void is surrounded by partitions like shear wall, as shown in Fig. 4, the transverse
shear stiffnesses for cellular plates must be added the transverse shear stiffness of paralleled
partitions (like shear-walls) to the transverse shear stiffness, (.G ho)*, given by (27). Hence

b,
k.G hy =(~(tho)*+xocohob—;°. (29)

vij

When a void passes through in the x direction, as shown in Fig. 5, the transverse shear
stiffness in the x direction of the cellular plate is based on only the shear stiffness of the
paralleled partitions as the shear walls and is written as
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yivj

Similarly, the transverse shear stiffness, x,G /i, may be written by replacing 6.0, b¥.
and b}, with b, b, b¥ , in the mentioned expressions of k.G .k, and b¥ ;, respectively.
Thus, the transverse shear stiffness of cellular plates has been presented. It must be noticed
that the method proposed here replaces the transverse shear stiffness of the cellular plate in
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Fig. 5. Plate with voids passed through.
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a field of the width b¥;; or b¥ ; prescribed by the i, jth void with an equivalent transverse

shear stiffness. The equivalent transverse shear stiffnesses per the 7, jth void are expressed
as

k. G.hy = anl,jK()G()h() (31)
K, G hy = 06, Ko Gohto (32)
in which the coefficients, o, and ag,. are defined as

_ K,\‘G\'h()

= — X — P, 33
ant,; KoGoho D(x \,)D(} yj) ( )

KVG),/'IO . .
At A % _ 4
16}/1.] K() G()h() D(X YI)D(.V yl) (3 )

in which % and p indicate the fields (from x,—b%_,,;/2 to x,+b%,;/2 and from
y;—b}k;_1/2 to y;+b},/2, respectively) prescribed by the i, jth void. For solid plates or a
portion without voids, o, and o;, become 1.

4. STRESS RESULTANTS AND STRESS COUPLES OF PLATELETS AND PARTITION

Once the transverse shear forces Q, and Q, are obtained, the stress resultants and
stress couples of the frame and partition parallel to the x direction, as shown in Fig. 6,
given as follows : the transverse shear forces Q fame and Q uruiion Of the frame and partition
located parallel to the x direction are

i, j th void i, jth frame part pallalleled partition part
: '
] L.
= ' !
- - ' Qx Qxframe ' !
e o ] prartiiion ]
1 I
* bv(i
«xGxho (xxGyho) koGohg —

0
Vi

i, jth frame part

Mxtop htop top platelet
* | | Nxtop /

e e & et et

? mep\ | partition
i, j th void

—_ X . . . . . ) P x

Qxframe // bottom platelet
‘ | | Nxbottom /
-

% v
hpottom Qxbottom Mybott
xbottom

Fig. 6. Stress resultants and stress couples of top and bottom platelets.
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(%G ho)*

Q)gframe = Qx KXG\-}I[)

(33)

KoGohy b
k.G . hy b*

yiJ

Q.\'paru‘rinn = Q

(36)

in which the frame is composed of the top and bottom platelets and of partition per void
and excludes the partition parallel like shear wall to the direction. The transverse shear
force Q, is divided by the transverse shear forces Q,,,, and Q ..n, Of the top and bottom
platelets in proportion to the thickness as

Piop
xtop = Mxframe 3 | (37)
Q. /4 Q f /’l,ap + hbouum
hbonom
_  Poion 38
Qxborlom Qxframk’ htop + hb()ll()m ( )

in which A,,, and ., = the slab’s thickness of the top and bottom platelets, respectively.
Hence, the flexural moments M,,,, and M,,,,,, of the top and bottom platelets at both ends
of the i, jth void are given by

b\'i. ]
Mxtop = mep 2f (39)
b xi,
beut/om = Qxbolmm ’ . (40)

2

Lastly, the axial forces N,,,,( = N ouom) Of the top and bottom platelets, due to the flexural
moments, are calculated by

M.\' + Mxmp + Mtbmmm

xtop = h *

(41)

in which A* = distance between middle surfaces of top and bottom platelets. Similar
expressions for y direction may be obtained.

S. STATIC ANALYSIS

Consider the static solutions by means of the Galerkin method. The deflections, w,
and rotational angles, , and 8,, can be expressed by a series expansion as follows :

w(’x’ .y) = zl ;] Wmnfmn (‘x’ y) (42)
H.X (x’ y) = Zl Zl g,vmngxmn (x’ y) (43)
0N = T T Ommx.3) (44)

in which w,,,, 0., and 8, = unknown displacement coefficients; and f,,,, . and g,,., =
shape functions satisfying the specified boundary conditions.
The Galerkin equations for the static problem can be written as
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éw‘mn : Z Z Wonn A 1mnmn + Z Z 9,\'mﬁ A 2mnmifi + Z Z 0)7?1"1 A 3mnmn = Pmn (45)
m=1 =1 m=1i=1 m=1n=1
56,\771'1 : z z wmn Blmnmn + Z Z 9 vl B2mnmn + 2 Z Ownn B Immna = 0 (46)
m=1a=1 m=1a=] m=1 A=
56ymn : Z z Winn Clmnmﬁ + Z Z 9,\‘)hﬁ CZmnmﬁ + Z z am’v’l C}mnrﬁﬁ = O (47)
m=1na=1 m=1a=1 m=1a=1

in which the coefficients A4, -« . s Cymume are given in Appendix 1. The unknown dis-
placement coefficients are obtained from solving a set of algebraic linear equations given
by (45)-(47).

6. NUMERICAL RESULTS FOR STATIC CALCULATION

Static analysis for a rectangular cellular plate has been presented by means of the
Galerkin method. Then, to examine the proposed method, numerical calculations are
performed for two types of simply-supported and clamped cellular plates, as shown in
Table 1. Data used are as follows: the Young's modulus E = 2.059 x 10" Pa; Poisson’s
ratio v = 0.17; slab’s height A, = 1 m; span lengths /, = [, = 30 m; void’s helght hi;=08
m. For simplicity, the lateral load is assumed to be unlformly distributed load
p = 9.807 x 10° Pa ; mass density p = 244.9 kg/m".

The shape functions used are

nmy

Son(X.¥) = sin T;-T—Y sin 7 (48)
Gu (. ) = 008 " =sin (49)
Gomn(X,¥) = sin mnx cos? (50)
for the simply-supported plates and
Son(x.3) = X =D (77 =1 (51)
Gomn(X,¥) = (= 1" (37 - 1) (52)

Table 1. Lists of isotropic rectangular cellular plates

Type Section hi.j bxi.j byi.j
P1 ot by 0.8 | 2.3 |30.0
0000000000ag
P2 [«ﬂx=30m*| 0.8 12.4 [30.0
P3 “1e bxij 0.8 |2.3 2.3

g 00000000000
P4 = 2,=30m— 0.8 2.4 2.4

unit : m
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Fig. 7. w and M, for a simply-supported cellular plate.

Gymn(x, ) = X =17 (P~ 1) (53)

for the clamped plate, in which X and j are defined as X = 2x//, and y = 2y/,, respectively.

Figures 7 and 8 show the deflections, w, and bending moments, M, and M,, for the
simply-supported and clamped plates. In these figures the solid lines indicate the numerical
results obtained from the proposed theory. the circles indicate the numerical results
obtained by using FEM code NASTRAN ; the broken lines indicate the numerical results
obtained from Takabatake’s theory (1991a) excluding the transverse shear deformation.
The results obtained from the theory proposed here show relatively good agreement with
the results obtained from the finite element method. The finite element method used here
is based on isotropic and rectangular plate elements proposed on the top and bottom
platelets and partitions of the voids, as shown in Fig. 9. The result obtained from the plate
element used here in FEM are confirmed to show excellent agreement with the result using
solid element to current plates.

Figure 10 shows the transverse shear forces, flexural moments, and axial forces of top
and bottom platelets at adjacent midspan for clamped cellular plate P2. Figure 11 indicates

40 M
(104 N-m /m)

== PRESENT THEORY
O M
=== TAKABATAKE THEORY (1991) BASED ON K-L HYPOTHESES.

Fig. 8. w and M, for a clamped cellular plate.
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the flexural moment of partition and the axial forces of top and bottom platelets for the
same cellular plate. It is clarified from these figures that the simplified theory proposed here
also shows agreement with the results using the finite element method. For the other plates

a similar good agreement is obtained.

The convergence of series expansion is very rapid for uniform loads. So, the con-

sideration of 16 terms gives an accuracy sufficient for all practical purposes.

7. FREE TRANSVERSE VIBRATIONS OF CELLULAR PLATES

Consider free transverse vibrations of a cellular plate. The method of separation of

variables is employed, assuming that
w(x, y, 1) = w(x, y)e" (1)

gx(x, Vs 1= 9}(()?q y)ei(uz(t)
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Fig. 11. Flexural moment of partition and axial forces of top and bottom platelets for clamped P2.

0,(x,y,1) = 0,(x, p)e" (1) (36)

in which w, 0, and 0, = functions of x and y. Hence, free transverse vibrations obtained
from (18)—(20) become

ow: wzmoah W+ [K.\'th() (w.x + gv)]\' + [K}'Gyho (W,y + gy)].y =0 (57)
60x . - (,L)2 ngx + Ky thO (Wx + gx) - [DOd(grr + vg)',}')].x

I—v - ~
=5 WDed (@, 40,01, =0 (58)

80,: —wL0,+x,Gho(w,+8,)—[Dod(@,,++0.)],

D@, 48,01, =0 (59)

2
in which @ = a constant.

The natural frequencies are presented by means of the Galerkin method. w, 8,, and 9},
are expressed as

W(X, }’) = wmnfmn (xs ,V) (60)
0.(X,3) = O smn(X, ¥) (61)
0,0x, ) = Oy (X, ¥) (62)

in which w,,, 0., and 8,,, = unknown displacement coefficients; and f,.,, g.m» and

9,m» = shape functions satisfying the specified boundary conditions. Hence, the Galerkin
equations of (57)—(59) become
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Wt Wag (A g + wszFl ) + Ocma A 2onemn + g,wvzﬁA 3mnmn = 0 (63)
08 mn s Wora B + O ona (Bapmn — w2F2mnmﬂ) + Gyme,lmnrm =0 (64)
56ymn D WanClmmn + 05 Cormumn + H_Wﬂﬁ (C s — wzFSmnﬁm') =0 (65)

in which F\ .. Fammns a0d Fs,.ns are defined as

[, L ([
Emm=fjﬁﬂgw®—ZZfJ~GQM#ﬁMMHMAJMHM(%)

0 Jo i=lj=1Jo Jo hO

&
Fo =
2mnrmi l

A=)

|

[\

Iv 1)- ¥
[J J G xnnd xmn dx dy— 2 Z J J % D(X _xi)D(y_yj)gxmﬁgxmn dx del
i=1j=1

T
0 JO 0 Jo
(67)

BT (L Ty
F3mnn’1ﬁ = pl—zo l:f J' gyrﬁﬁgymn d-x dy - Z Z J' J‘ allj D(x——-xi)D(y—yj)g_wﬁﬁg_vmn dX dy]
i=1j=1Jo Jo
(68)

The natural frequencies w,,, are obtained by solving (63)—(65) as eigenvalue problems for
a prescribed value of m = mand n = 7.

Then, for practical uses, approximate expressions for the natural frequencies are
considered. Expressing 6,,,, and 6,,, in terms of w,,, and «? from (63)—(65) and neglecting
the terms of (w?)* and (w?)® in a cubic equation with respect to w?, the m, nth natural
frequency w,,, is obtained as

in which X,,, and F,,, are defined as

Kmn =4 Imnmn( - BZmnmn CSmnmn + B3mnmn C2mnmn) + A2mnmn (Blmnmn CSmnmn - Cl mnmnB3mnmn)
+ A anmn(clmnmnBP.mnmn - Blmnmn CZmnmzz) (70)

an =4 1mnmn ( - B2mnmnF3mnmn - C3mnmnF2mnmn) +my Flmnmn (BZmnmn C3mnmn - Banmn CZmnmn)
+ AZmnmnBlmnmnF3mnmn + A3mnmnClmnmnF2mnmn . (7 1)

8. NUMERICAL RESULTS FOR NATURAL FREQUENCIES

The natural frequencies for a rectangular cellular plate have been presented in an
approximate form by means of the Galerkin method. Then, to examine the proposed
method, numerical computations are performed for the previous rectangular cellular plates,
as shown in Table 1. The shape function is made up of the well-known natural functions
of beams, for instance as given in Szilard (1974). The current shape functions used are
(48)—(50) for simply-supported plates and the following natural function of clamped beams
for clamped plate:
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Table 2. Natural frequencies of simply supported and clamped cellular plates P1

Simply-supported Clamped
(rad/sec) m=1 m=2 m=23 m=1 m=2 m=73
RIGOROUS 18.66 29.42 41.34 32.80 41.14 51.34
n=1 APPROXIMATE 18.64 29.39 41.29 32.76 41.10 51.29
FEM 18.49 28.95 40.92 33.01 40.04 49.63
RIGOROUS 53.42 60.40 73.39 79.66 86.20 95.96
n=2 APPROXIMATE 53.16 61.19 73.42 79.23 85.87 95.64
FEM 55.69 63.24 74.52 79.39 84.59 92.90
RIGOROUS 111.00 112.70 124.22 145.37 149.64 157.81
n=3 APPROXIMATE 109.58 114.16 124.17 14340  148.17  156.51
FEM 110.72 113.35 126.77 138.80 142.67 158.90

In which m = mode number in x-direction, # = mode number in y-direction.

AmX Anx\ chA,, —cosi,, AmX [ AmX
= oo () ) 7]
Any A\ chi,—cosA4, Al Ay
x {Ch ( I, )‘COS ( I )“ sh 4, —sin 4, [Sh ( l >_Sm ( I, ﬂ} (72)
in which 4,, and 4, = well-known constants.
Table 2 shows the natural frequencies for Type Pl. It shows that the differences
between the results obtained using (63)-(65) and the approximate results obtained using
(69) are negligible in practical use. The results obtained from the proposed theory show

good agreement with results obtained from FEM. For the other plates a similar agreement
is obtained.

9. FORCED VIBRATIONS OF CELLULAR PLATES

Consider forced vibrations of the current rectangular cellular plate. The general solu-
tions of (18)—(20) are assumed to be of the form

W(X, Y, t) = Z Z f;nn(x’ )’)W,,m([) (73)
m=1n=1

9\'(xa Vs t) = Zl Z] gxmn(x-, .V)O\'mn(t) (74)

0_\' (x, Vs t) = Zl Z] Grymn (X. y)armn (t) (75)

in which w,,,, 8, and 8,,,, = unknown functions of time 7.
Then, (18)—(20) may be rewritten as

Wy : Z Z (Woria 0 F '\ s + 2P @y 10 W ' o

m=1na=1

— Wi A Ymnmn — 0\'77117 A 2mnmn T 9)‘)715 A Jmnmﬁ) - Pmn =0 (76)

56,rmn : Z Z (6\,;,,1 Fmeﬁﬁ + Wonn Blmnﬁm + g,vrim BZmnmﬁ + gyrhﬁ BSmnn’m) = 0 (77)

m=1r7=1

(Se}'mn : Z Z (gwm’r F}mmﬂﬁ + Wan Clmnr?m + g.vmﬁ CImnrizﬁ + Hyrﬁﬁ C]mnrirr‘l) = 0 (78)

m=1 =1
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in which A,,, = damping constant of the cellular plate. The dynamic response is obtained
by solving (76)—(78). The coefficients in these equations have non-diagonal terms m # m
and/or n # 7 due to the effect of the voids. Therefore, the solution will be based on either
numerical computation, such as the Wilson-6 method, or the approximate solution in
following section.

10. APPROXIMATE SOLUTIONS FOR FORCED VIBRATIONS

For practical use, consider an approximate solution in the closed-form. Assuming that
the behavior of a cellular plate is now dominated by only the diagonal terms in the
coefficients, (76)—(78) become of uncoupled form with respect to m and %, and, » and 7,
respectively. Furthermore, neglecting the rotatory inertia’s terms in the uncoupled equa-
tions, we have the following differential equation in term of only w,,,:

Wmn + 2amn wmn + bmn Wpin = an(t) (79)
in which
Qun = hmn Wy (80)
A *
by = — — 81
” m()FI mnmn ( )
P
=7 82
an(t) mOFlmnmn ( )
in which
1
A::n = A Lmnmn ™ A‘ [A 2mnmn (C3mnmn Blmﬂmn - B3mnmn Clmnmﬂ)
+ A3mnmn (BZmnmn Clmnmn - Blmnmn CZmnmn)] (83)
where

Amn = BZmnmn C3mmnn - BSmnmn Cmerm . (84)

The general solution of (79) is

!
W = €' (C} 81N gt + C COS 0y l) + J e %D 8in g, (f —T)Q0,m(t) dt

Omn Jo

(85)

in which C, and C, = constants; and «,,,, are defined as

Loy = ~/ By — Ao (86)

Thus the dynamic deflections of a rectangular cellular plate are determined by substituting
(85) into (73).

11. NUMERICAL RESULTS FOR DYNAMIC RESPONSES

To examine the closed-form approximate solution proposed here, numerical com-
putations are carried out for the previous cellular plates, as shown in Table 1. The damping
constants 4, are 0.03 for all modes. The following two types of external lateral loads
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Fig. 12. Test loads for floors.

without the additional mass are assumed: a harmonic and uniformly-distributed force
p = p*sinw,t, in which p* = 9.807 x 10° Pa and w, = 62.83 rad/sec (10 cps), and test loads
checking the disturbing effect of the vibration of floors caused by people walking and other
every usage, as shown in Fig. 12. The test loads consists of four types of walking, tripping,
bending and stretching, and heel. They act as a concentrated load at the midspan. The
current natural functions used are the same ones as used in the free vibrations.

Figure 13 shows the dynamic deflections at the midpoint of simply supported cellular
plates of Type Pl subjected to the harmonic load. In this figure, the solid lines indicate
values obtained from the numerical computations using the linear acceleration method ;
the broken lines indicate values obtained from the approximate solution; and the solid
lines with circles indicate values obtained from FEM. The difference between solid lines
and broken lines is too small to plot. Table 3 shows the maximum dynamic deflections at
the midspan of the cellular plates subjected to the harmonic load. Figure 14 shows the
dynamic deflections at the midpoint of clamped cellular plates of P4, subjected to the test
loads. The numerical results show that the approximate solution proposed here is applicable
to the dynamic analyses of cellular plates, in practical use.

For these numerical models the calculations using the present theory are remarkably
fast as compared to those using FEM. For example CPU time of P4 for the harmonic load
using the present theory with Work Station HP 715/50 is about 40 seconds; and the input
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Fig. 13. Dynamic deflections of a simply-supported plate P1 subjected to uniform load.

Table 3. Maximum dynamic deflection of cellular plates

Maximum dynamic deflection

Type Analytical method Simply supported Clamped
Wilson-6 Method 0.02723 m 0.01875m
Pl Approximate Solution 0.02715m 0.02223 m
FEM 0.02624 m 0.01874 m
Wilson-8 Method 0.03964 m 0.02608 m
P2 Approximate Solution 0.0397t m 0.02923 m
FEM 0.02455 m
Wilson-6 Method 0.02247 m 0.02279 m
P3 Approximate Solution 0.02291 m 0.02281 m
FEM 0.02111 m 0.02156 m
Wilson-0 Method 0.02730 m 0.02731 m
P4 Approximate Solution 0.02733 m 0.02905 m
FEM 0.02638 m

data are very simple. Since the series in the theory proposed here converges very rapidly,
the consideration of nine terms gives an accuracy sufficient for all practical purpose.

12. CONCLUSIONS

The general and simplified analysis methods for an isotropic rectangular cellular plate
with arbitrarily-disposed voids have been proposed by considering the transverse shear
deformation along with frame deformation. It is clarified from numerical computations

that the simplified theory proposed here is usable in the preliminary stage of designs of
such a cellular plate.

Acknowledgments—The authors would like to express their appreciation to T. Ishihara of Nihon-Kokudo-
Kaihatsu Corporation and A. Tamatsukuri of Chizaki Corporation for their help in the computations.
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APPENDIX 1. COEFFICIENTS AND LOAD TERMS

The coeflicients are defined as

s ‘
A mma = KoGohy J‘ J [ fonae) « + (“Gv.fmnﬁv).;]fmn dxdy (A1)
0 Jo
1o '
Asmamn = KoGoho J J (G ).« o dx dy (A2)
o Jo
1 [,
Aspnma = KoGohyg J‘ J (xG}gyrhﬁ).yfmn dxdy (A3)
0 Jo
I‘ 1‘
B pmma = KoGohy j J Lixx SonaxGemn dx Ay (Ad)
o Jo
e 1—v
Bmeim = J J [KOGDhO‘xG(gvrmn _DO (dgxrﬁﬂ.x).x - —Z_DO (dgvﬁa.r).p}qwm dx d,V (AS)
n Jo
(v [—v
Bipumn = Dy j J [—v(dg‘.m,,‘,)_‘ — G0, 10 e A (A6)
o Jo
lr l\
Cmumn = KoGohg J‘ J 1(.‘x.fhﬁ,n9,mm dxdy (A7)
0 Jo
(A }—v
Camom = Do f f [4 V(g — T(dgmv).(}gw dxdy (A8)
o Jo
. o | Y
Cirmn = J J~ [0 Gnhoac,vgymn‘Do (dgymn.y).y* TDO (AG,m1.4) <)Gymn dx dy (A9)
0 Jo
and the terms of external loads are
L
P, = J J Pl dx dy (A10)
0 Jo

They may be calculated easily by the method shown in Appendix 2.

APPENDIX 2. CALCULATION INCLUDING A SPECIFIC FUNCTION D(x—x,)

The integral calculation including the specific function D(x —x;) can be written, from Takabatake (1991a),
as

A+,

J " Die—x) S dx = j o de (A11)
2)

0 X,= [h”_/

in which £ is a supplementary variable of x. The nth derivatives of the specific functions can therefore be expressed
as

ﬁ D (x—x) f(x) dx = J " 2)(7 Dyrfm(E) dé (A12)
0

0 x,— (b, ;2)

in which the superscripts enclosed within parentheses indicate the differential order. For calculations including
the specific function D(y— y,) similar expressions may be obtained.
When the conditions b, </, and b,;; « [, are satisfied, the specific functions D(x—x,) and D(y—y)) are
approximately related to the Dirac functions, é(x—x;) and (y —»,), by:
Dix—x;) = b,

2

D(y—y;) = b, ;6(y—1)) (A13)

3(x—x,)



